LARGE WIND MISSILE IMPACT PERFORMANCE OF PUBLIC AND COMMERCIAL BUILDING ASSEMBLIES

Final Report
Contract No. 04CG-10-13-00-05-006
CFDA No. 52009

Submitted By
Nur Yazdani, Ph.D., P.E.
Perry S. Green, Ph.D.
Ronald Cook, Ph.D., P.E.
Saif Haroon, Ph.D.
Christopher Braden

Submitted to the
Florida Department of Community Affairs
Division of Emergency Management

October 2004
TABLE OF CONTENTS

LIST OF TABLES.. iv
LIST OF FIGURES... vi
ACKNOWLEDGEMENTS.. xi
ABSTRACT.. xii

CHAPTER 1 INTRODUCTION... 1
1.1. General... 1
1.2. Objectives.. 5

CHAPTER 2 BACKGROUND REVIEW.. 6
2.1. Tornadoes.. 6
2.2. Hurricanes .. 8
2.3. Forces – Tornadoes and Hurricanes... 9
2.4. Effects of Extreme Wind Forces.. 11
2.5. Building Failure Modes – Elements, Connections, and Materials 12
2.6. Effects of Windborne Debris.. 14
2.6.1. The Nature of Windborne Debris.. 18
2.6.2. Potential of Debris... 19
2.6.3. Induced Loads from the Missile and Other Debris... 20
2.7. Large Missile Loads and Successful Test Criteria.. 21
2.8. Windborne Debris Impact Test Standards... 22
2.8.1. Federal Emergency Management Agency (FEMA)... 23
2.8.2. Standard Building Code (SBC)... 23
2.8.3. Florida Building Code (FBC).. 26
2.8.4. Department of Energy (DOE) Standard... 26
2.8.5. American Society for Testing and Materials (ASTM)... 27
2.8.6. Division of Emergency Management Standard.. 29
2.9. Tests Performed on Wall/Roof Assemblies.. 29

CHAPTER 3 TEST PROGRAM.. 34
3.1. Introduction... 34
3.2. Performance Classifications and Expectations... 34
3.3. Testing Method... 36
3.3.1. Significance of the Test... 36
3.3.2. Test Assembly... 38
3.3.3. Missile.. 41
LIST OF TABLES

Table 2.1 Windborne Debris and Debris Classification for Tornadoes and Hurricanes (FEMA 2000) ... 17
Table 2.2 Applicable Missiles in SBC SSTD-12 (1999) 25
Table 2.3 Summary of Minimum DOE Wind Design Criteria (DOE 2002) 28
Table 2.4 Applicable Missiles in ASTM E-1996 (2004) 30
Table 2.5 Description Levels in ASTM E-1996 (2004) 31
Table 2.6 EOC Survivability Performance Category for Wind Hazards (Division of Emergency Management 2002) 31
Table 3.1 Large Missile Impact Test Criteria ... 37
Table 3.2 Acceptance Criteria for Basic, Enhanced-A and Enhanced-B Large Missile Impact test ... 49
Table 3.3 Validity of Specified Deemed to Comply List 49
Table 3.4 Identified Wall Assemblies for Basic, Enhanced-A and Enhanced-B Testing ... 53
Table 3.5 Identified Roof Assemblies for Basic, Enhanced-A and Enhanced-B Testing ... 54
Table 3.6 Large Missile Impact Test Nomenclature for Wall/Roof Assemblies ... 58
Table 4.1 Test Results for Wood Stud Wall Assemblies 67
Table 4.2 Test Results for Metal Stud Wall Assemblies 71
Table 4.3 Test Results for Concrete Wall Panels 73
Table 4.4 Test Results for Metal Roof Framing Systems 76
Table 4.5 Test Results for Concrete Roof Panels 82
Table 5.1 Recommended Improvements of Performance for Wall Assemblies ... 87
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.2</td>
<td>Recommended Improvements of Performance for Roof Assemblies</td>
<td>89</td>
</tr>
<tr>
<td>Table A.1</td>
<td>Wall/Roof Assemblies Passing Previous Basic Large Missile Impact Tests (2x4 in. 9 lb missile @ 34 mph)</td>
<td>A-2</td>
</tr>
<tr>
<td>Table A.2</td>
<td>Wall/Roof Assemblies Failing Previous Basic Large Missile Impact Tests (2x4 in. 9 lb missile @ 34 mph)</td>
<td>A-27</td>
</tr>
<tr>
<td>Table A.3</td>
<td>Wall/Roof Assemblies Passing Previous Enhanced Large Missile Impact Tests (2x4 in. 15 lb missile @ 50 mph)</td>
<td>A-28</td>
</tr>
<tr>
<td>Table A.4</td>
<td>Wall/Roof Assemblies Failing Previous Enhanced Large Missile Impact Tests (2x4 in. 15 lb missile @ 50 mph)</td>
<td>A-31</td>
</tr>
<tr>
<td>Table A.5</td>
<td>Wall/Roof Assemblies Passing Previous Large Missile Impact Tests for Various Missiles Sizes and Speeds</td>
<td>A-33</td>
</tr>
<tr>
<td>Table A.6</td>
<td>Wall/Roof Assemblies Failing Previous Large Missile Impact Tests for Various Missiles Sizes and Speeds</td>
<td>A-42</td>
</tr>
<tr>
<td>Table B.1</td>
<td>Common Florida Wall Assemblies</td>
<td>B-2</td>
</tr>
<tr>
<td>Table B.2</td>
<td>Common Florida Roof Assemblies</td>
<td>B-5</td>
</tr>
<tr>
<td>Table B.3</td>
<td>Previous Basic Large Missile Performance of Commonly Used Florida Wall/Roof Assemblies (2x4 in. 9 lb missile @ 34 mph)</td>
<td>B-6</td>
</tr>
<tr>
<td>Table B.4</td>
<td>Previous Enhanced Large Missile Performance of Commonly Used Florida Wall/Roof Assemblies (2x4 in. 15 lb missile @ 50 mph)</td>
<td>B-8</td>
</tr>
<tr>
<td>Table D.1</td>
<td>Performance of Commonly Used Florida Wall Assemblies with Wood Framing Systems</td>
<td>D-2</td>
</tr>
<tr>
<td>Table D.2</td>
<td>Performance of Commonly Used Florida Wall Assemblies with Metal Framing Systems</td>
<td>D-3</td>
</tr>
<tr>
<td>Table D.3</td>
<td>Performance of Commonly Used Florida Concrete Wall Panels</td>
<td>D-4</td>
</tr>
<tr>
<td>Table D.4</td>
<td>Performance of Commonly Used Florida Roof Assemblies with Metal Framing Systems</td>
<td>D-5</td>
</tr>
<tr>
<td>Table D.5</td>
<td>Performance of Commonly Used Florida Concrete Roof Panels</td>
<td>D-6</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1 Fujita Tornado Damage Scale (National Weather Service 2003)…… 7
Figure 2.2 Saffir-Simpson Hurricane Scale (FEMA 2000, and National Weather Service 2003)…………………………………………………………………… 10
Figure 2.3 Forces on a Building due to Wind Moving around the Structure (FEMA 2000)…………………………………………………………….. 13
Figure 2.4 Internal Pressures Caused Windward Wall Openings………………….. 13
Figure 2.5 Glass Failure of the Guaranty Bank Building during Hurricane Allen, Corpus Christi, Texas……………………………………….. 16
Figure 2.6 Effect of Windborne Debris on Glazing Systems, Hurricane Andrew…………………………………………………………….. 16
Figure 2.7 Palm Tree Pierced by Plywood Missile, Hurricane Andrew……… 17
Figure 2.8 Unreinforced Masonry Wall Pierced by 100 mph 2x4 in. Lumber, WERC, Texas Tech University……………………………………….. 24
Figure 2.9 Refrigerator Pierced by Windborne Missile………………………… 25
Figure 2.10 Impact Locations for Large Missile Test According to FBC (2001)…………………………………………………………….. 28
Figure 2.11 Impact Locations for Large Missile Test According to ASTM E-1996 (2004)………………………………………………………………. 30
Figure 3.1 Test Assembly Schematic…………………………………………… 39
Figure 3.2 Overall Testing Assembly ………………………………………….. 39
Figure 3.3 Close-up of Concrete Foundation Block with J-Bolts and Threaded Rod ……………………………………………………………….. 40
Figure 3.4 A 9 lb and a 15 lb Missile ……………………………………………… 40
Figure 3.5 Large Missile Cannon at UF ………………………………………….. 42
Figure 3.6 Large Missile Cannon Firing Mechanism…………………………… 42
Figure 3.7 Penetration of Plywood by 15 lb Missile During Calibration ……… 43
Figure 3.8 Labview Data Acquisition System ... 43
Figure 3.9 Handwritten Data Collection Sheet ... 45
Figure 3.10 Large Missile Calibration Curve .. 47
Figure 3.11 Large Missile Calibration Data Plot .. 47
Figure 3.12 Approach Followed to Obtain the Wall/Roof Assemblies to be Tested... 52
Figure 3.13 Approach Followed for the Testing of Wall/Roof Assembly........... 57
Figure 3.14 Stucco Lath Applied to Test Frame with Gypsum Specimen (Upper Left) and Dinsglass Specimen (Lower Right) 59
Figure 3.15 Finished Stucco Over Gypsum Specimen (Upper Left) and Dinsglass Specimen (Lower Right) ... 59
Figure 3.16 Steel Stud Wall Specimen.. 61
Figure 3.17 Construction of the Tilt-Up Panel... 61
Figure 3.18 Construction of CMU Specimen.. 63
Figure 3.19 Completed ICF Specimen.. 63
Figure 3.20 Completed AAC Specimen.. 65
Figure 3.21 Plywood Attached to Purlins ... 65
Figure C.1 Basic Test on Wall Assembly, Stucco on 1/2 in. Plywood and Wood Stud... C-2
Figure C.2 Basic Test on Wall Assembly, Stucco on 7/16 in. OSB and Wood Stud... C-2
Figure C.3 Basic Test on Wall Assembly, Stucco on 5/8 in. Gypsum Board and Wood Stud... C-3
Figure C.4 Basic Test on Wall Assembly, Stucco on 1/2 in. Dinsglass and Wood Stud... C-3
Figure C.5 Basic Test on Wall Assembly, 5/16 in.
Hardiboard on 1/2 in. Plywood and Wood Stud
C-4

Figure C.6 Basic Test on Wall Assembly, 5/16 in.
Hardiboard on 7/16 in. OSB and Wood Stud
C-4

Figure C.7 Basic Test on Wall Assembly, 3/4 in.
Advantech and Wood Stud
C-5

Figure C.8 Basic Test on Wall Assembly, Wood Stud of 3/4 in. Advantech
C-5

Figure C.9 Enhanced-A Test on Wall Assembly, Brick Veneer
on 7/16 OSB and Wood Stud
C-6

Figure C.10 Enhanced-B Test on Wall Assembly, Brick Veneer
on 7/16 in. OSB and Wood Stud
C-6

Figure C.11 Enhanced-A Test on Wall Assembly, Brick
Veneer on 1/2 in. Plywood and Wood Stud
C-7

Figure C.12 Basic Test on Wall Assembly, 5/16 in.
Hardiboard on 1/2 in. Plywood and Metal Stud
C-7

Figure C.13 Basic Test on Wall Assembly, 5/16 in.
Hardiboard on 7/16 in. OSB and Metal Stud
C-8

Figure C.14 Enhanced-A Test on Wall Assembly, 5V
Galvalume on 1/2 in. Plywood and Metal Stud
C-8

Figure C.15 Basic Test on Wall Assembly, 5V
Galvalume on 1/2 in. Plywood and Metal Stud
C-9

Figure C.16: Enhanced-A Impact One on the Web of 6 in. CMU Wall
C-9

Figure C.17: Enhanced-A Impact Two on 6 in. CMU Wall
C-10

Figure C.18: Enhanced-A Impact Three on the Web of 6 in. CMU Wall
C-10

Figure C.19: Basic Test on 6 in. CMU Wall
C-11

Figure C.20 Basic Test on 6 in. CMU Wall with Horizontal Reinforcement
C-11

Figure C.21 Enhanced-A Test on 6 in. CMU Wall Horizontal Reinforcement
C-12
Figure C.22 Basic Test on AAC Block Wall.. C-12
Figure C.23 Enhanced-A Test on AAC Block Wall..................................... C-13
Figure C.24 Enhanced-B Test on AAC Block Wall..................................... C-13
Figure C.25 Missile Impact on 6 in. ICF Wall... C-14
Figure C.26 Missile Impact on 5 in. Tilt-Up Wall...................................... C-15
Figure C.27 Enhanced-A Test on Roof Assembly, 5V Galvalume on 1/2 in.
Plywood and Metal Framing... C-15
Figure C.28 Basic Test on Roof Assembly, 5V Galvalume on 1/2 in.
Plywood and Metal Framing... C-16
Figure C.29 Corner Basic Impact One on Roof Assembly, 26 ga. Standing Seam
on 1/2 in. Plywood and Metal Framing.. C-16
Figure C.30 Corner Basic Impact Two on Roof Assembly, 26 ga. Standing Seam
on 1/2 in. Plywood and Metal Framing... C-17
Figure C.31 Middle Basic Impact on Roof Assembly, 26 ga. Standing Seam
on 1/2 in. Plywood and Metal Framing... C-18
Figure C.32 Middle Enhanced-A Impact on Roof Assembly, 26 ga. Standing Seam
on 1/2 in. Plywood and Metal Framing... C-19
Figure C.33 Enhanced-B Test on Roof Assembly, 26 ga. Standing Seam on 1/2 in.
Plywood and Metal Framing... C-20
Figure C.34 Middle Enhanced-A Impact on Roof Assembly, 5V Galvalume
on 1-1/2 in. Structural Deck and Metal Framing............................... C-20
Figure C.35 Corner Enhanced-A Impact on Roof Assembly, 5V Galvalume
on 1-1/2 in. Structural Deck and Metal Framing............................... C-21
Figure C.36 Enhanced-B Test on Roof Assembly, 5V Galvalume on 1-1/2 in.
Structural Deck and Metal Framing... C-22
Figure C.37 Basic Test on Roof Assembly, Asphalt Shingles on 7/16 in.
OSB and Metal Framing... C-23
Figure C.38 Enhanced-A Test on Roof Assembly, 3 in. Metal Deck
and Metal Framing... C-23
Figure C.39	Middle Enhanced-B Impact on Roof Assembly, 3 in. Metal Deck and Metal Framing	C-24
Figure C.40	Corner Enhanced-B Impact on Roof Assembly, 3 in. Metal Deck and Metal Framing	C-24
Figure C.41	Missile Penetration at the Joint from the Enhanced-B Test on Roof Assembly, 3 in. Metal Deck and Metal Framing	C-25
Figure C.42	Middle Enhanced-B Impact on Roof Assembly, 3 in. Metal Deck and Metal Framing	C-25
Figure C.43	Enhanced-A Test on 6 in. Hollow Core Slab	C-26
Figure C.44	Tests on 8 in. Hollow Core Slab	C-27
ACKNOWLEDGEMENT

The study was performed under a grant from the Division of Emergency Management, Florida Department of Community Affairs. Engineering advice provided by Barkley Consulting Engineering, Inc., Tallahassee, FL, are gratefully acknowledged. Authors also acknowledge Gate Precast Company and ECO Block, LLC for donating materials for this research.
ABSTRACT

In the absence of a standard guideline for Emergency Operations Centers (EOC), The Division of Emergency Management (DEM) at the Florida Department of Community Affairs (DCA) uses Enhanced Hurricane Protection Areas (EHPA) guidelines from the Florida Building Code (FBC). The EHPA guidelines state that wind and debris exposure can be provided through FBC criteria, provided an enhanced wind speed of 40 mph above the code specified basic design wind speed is used. The FBC specified 2x4 in. lumber weighing 9 lb impacting the building envelope at a speed of 34 mph may not be sufficient for EOCs, schools and/or light commercial buildings. A draft EOC Survivability Performance Category table from DCA lists Performance Category 3 (from 0 – 4 scale) as “Hurricane Enhanced Protection”, with missile impact resistance of a 2x4 in. 15 lb stud traveling at 50 mph. With the enhanced hurricane design wind speeds specified in the draft table, it may be sufficient to achieve the Performance Category 3 missile impact resistance for survivable EOCs.

The purpose of this study was to investigate the performance of commonly used Florida wall and roof assemblies under the basic FBC, enhanced-A and enhanced-B impacts. The enhanced-A and enhanced-B impacts consisted of a 2x4 in. 15 lb missile at a speed of 50 mph and 60 mph, respectively. Based on a thorough literature review, a list of wall and roof assemblies, which were not tested before, were selected. Wall assemblies included wood and metal framing systems, and concrete panels. Roof assemblies included metal framing systems and concrete panels. Based on the test results, a comprehensive list of wall and roof assemblies that passed various levels of large missile impact testing was developed. Also recommended were assemblies that should be avoided for the construction of EOCs, schools and/or light
commercial buildings. Recommendations on the impact performance improvement techniques for selected assemblies were also made.